Comprehensive —omics of the developing turkey: databases for the future

THE DAILY NEWSLETTER
Sign up to our daily email newsletter

News Technology Space Physics Health Environment Mind | Travel Live Jobs

Home | News | Health

DAILY NEWS 6 September 2018

Tim Johnson University of Minnesota tjj@umn.edu

Probiotics are mostly useless and can actually hurt you

Longitudinal Sampling

FOOD MICROBIOLOGY

A Consistent and Predictable Commercial Broiler Chicken Bacterial Microbiota in Antibiotic-Free Production Displays Strong Correlations with Performance

Cross-Sectional Sampling

Anatomical location impacts microbiota

Age is a major driver of the microbiota

Tissue > Season > Age >> Flock effects

Cecum

Cecum

Flock (location)

Flock

Cvcle

	I IOCK		Juili	110	uiii	Hachea				
	Age:	Р	R	Р	R	Р	R			
	Day 07	<0.001	0.053	0.02	0.037	0.002	0.105			
۱)	Day 14	<0.001	0.066	0.175	0.013	<0.001	0 265			
	Day 21	<0.001	0.134	0.19	0.011	<0.001	0.108			
	Day 28	<0.001	0.095	0.05	0.027	<0.001	0.12			
	Day 35	0.004	0.078	0.004	0.094	<0.001	0.124			
	Day 42	<0.001	0.298	<0.001	0.118	0.004	0.057			

lleum

lleum

Season

Age:	Р	R	Р	R	Р	R				
Day 07	<0.001	0.493	<0.001	0.582	<0.001	0.625				
Day 14	<0.001	0.373	<0.001	0.635	<0.001	0.447				
Day 21	<0.001	0.39	<0.001	0.567	<0.001	0.431				
Day 28	<0.001	0. 279	<0.001	0.443	<0.001	0.202				
Day 35	<0.001	0.446	<0.001	0.522	<0.001	0.299				
Day 42	<0.001	0254	<0.001	0.429	<0.001	0 .24				

Age

Tissue

Cecum lleum Trachea Litter Р lР R P R Across: 0.307 Age < 0.001 < 0.001 0.086 < 0.001 0.252 < 0.001 Across: Sample Type < 0.001

Trachea

Trachea

		Trachea							Trachea					
		D07	D14			D35	D42		D07	D14			D35	D42
	Achromobacter	-0.74		-0.31	-0.49	-0.37		Paenibacillus	-0.7					
	Acidocella	-0.32						Parabacteroides					-0.3	
	Acinetobacter		0.24				0.24	Paracoccus	0.38	0.41				
	Aerococcus		0.37	0.32	-0.33			Pediococcus		0.47	-0.29			
R: -0.78 (Spearman index) P: 0.000000000001	Aeromicrobium	0.43	0.33					Peptoniphilus	0.48	0.63	0.51	-0.28		
12	AF12					-0.33		Peptostreptococcus		0.46	0.39	-0.45		
ORT	Alloiococcus			0.37				Phascolarctobacterium		0.28			-0.4	
10 -	Anaerococcus	0.3	0.51	0.54				Propionibacterium	0.36				0.36	
8 -	Anaerotruncus					-0.34	-0.31	Proteus	-0.43			-0.29		
	Arthrobacter	0.24						Pseudoclavibacter	0.27					
6 -	Avibacterium	-0.76	-0.23	-0.3				Psychrobacter	0.42	-0.47				0.29
4 -	Bacillus	-0.7						Ralstonia	-0.57	-0.45	-0.53			
	Bacteroides			0.33	-0.28	-0.37		Rhodococcus	0.53	0.36				
2 -	Bifidobacterium	0.76	0.48	-0.28				Roseateles		-0.37	-0.48			
	Bilophila					-0.38		Rummeliibacillus				-0.49		
50 100 150 200 250	Blautia	0.62	0.3				-0.26	Sediminibacterium	-0.65	-0.63	-0.7			
90 100 130 200 250 Weight_g	Brachybacterium		0.26	0.53	-0.28	0.33		Salinococcus			0.51		0.48	
weignt_g	Brevibacillus	-0.77	-0.55	-0.55	-0.33			Serratia	-0.53					
R: -0.66 (Spearman index) P: 0.00000000046	Brevibacterium		0.23	0.45		0.38		Sphingomonas		-0.25	-0.61			
Unclassified.Enterobacteriaceae	Butyricimonas					-0.35		Sporosarcina		0.45	0.39	-0.37		0.26
15 - • • • E. coli	Candidatus Arthromitus	0.51		-0.49				Staphylococcus	0.71	0.51				
L. COII	Candidatus Portiera			0.25				Streptococcus	-0.61		-0.57	0.33		
	Comamonas			-0.32				Tissierella Soehngenia		0.4		-0.49		
10 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carnobacterium		-0.39					Vagococcus	0.37	0.31				
	Clostridium		0.36		-0.32	-0.27		Weissella	0.7	0.32	-0.6	-0.26		
000000000000000000000000000000000000000	Comamonas	-0.29						Yaniella			0.44		0.33	
5 -	Coprobacillus	-0.42				-0.33		Unclassified 03196G20	-0.65	-0.71	-0.74			
	Corynebacterium	0.6	0.59			0.36		Unclassified Aerococcaceae			0.4		0.44	0.24
	Delftia	-0.54		-0.55				Unclassified Alcaligenaceae			0.24			
0-1	Dehalobacterium					-0.27	-0.29	Unclassified Bacillaceae	-0.25	0.25	0.27			
50 100 150 200 250	Devosia		0.42	0.24				Unclassified Barnesiellaceae			0.25		-0.28	
Weight_g	Dietzia	0.47	0.56	0.4	0.53	0.33		Unclassified Bifidobacteriaceae		0.56		j		
R: -0.68 (Spearman index)	Dorea	0.65	0.24	-0.24			-0.26	Unclassified Bradyrhizobiaceae	-0.52	-0.49	-0.64			
P: 0.00000000048	Eggerthella	0.7	0.24				-0.26	Unclassified Caulobacteraceae	-0.52		-0.39		0.25	
0	Enterococcus	0.31	0.48				0.3	Unclassified Clostridiales	0.3				-0.35	
10 Gallibacterium	Erysipelothrix	-0.65	0.27		-0.43			Unclassified Comamonadaceae	-0.48		-0.64			
a Cambactoriani	Facklamia	0.42	0.53	0.39		0.27		Unclassified Coriobacteriaceae	0.35					-0.38
0 0 0	Faecalibacterium	0.38		0.28		-0.48	-0.27	Unclassified Elusimicrobiales	-0.67	-0.49	-0.69			
6 -	Gallibacterium	-0.68						Unclassified Enterobacteriaceae	-0.66			0.26		0.28
	Gallicola	0.44	0.48	0.28				Unclassified Lactobacillales		0.41				
4 -	Gordonia		0.64		0.45			Unclassified Leuconostocaceae	0.54		-0.37	-0.32		
2 -	GW34		0.32					Unclassified Micrococcaceae		0.4				
	Helcococcus		0.51		-0.34			Unclassified Mogibacteriaceae	0.32					
	Helicobacter			0.43		-0.29		Unclassified Moraxellaceae	_	-0.48	-0.3			0.34
50 100 150 200 250	Jeotgalicoccus			0.42		0.37		Unclassified Planococcaceae	0.5					
Weight_g	Leucobacter			0.25		0.24		Unclassified Porphyromonadaceae		0.3				
	Leuconostoc	0.28	0.34					Unclassified Pseudomonadaceae		0.32	0.39	-0.39		
	Moraxella	-0.66						Unclassified RF32					-0.43	
	Microbacterium		0.41					Unclassified RF39	0.7		-0.25		_	-0.32
	Oligella		0.42					Unclassified Ruminococcaceae	0.49				-0.29	-0.24
	Ornithobacterium		-0.32	-0.46	-0.29			Unclassified TM73		0.36				
	Oscillospira	-0.36				-0.41	-0.3	Unclassified Xanthomonadaceae	-0.56		-0.37			0.28

"That's interesting, but what is going on at the gene expression / functional level?"

Hi-C Proximeta: creating a database of scaffolded poultry microbial genomes

Rumen metagenome: 913 scaffolded genomes

- k_Bacteria
- p_Fibrobacteres
- p_Proteobacteria
- p_Spirochaetes
- p_Euryarchaeota
- p_Firmicutes
- p_Actinobacteria
- o_Bacteroidales
- o_Clostridiales
- f_Prevotellaceae

- Samples
 - Gut (comm.)
 - Trachea (comm.)
 - Sinus wash (comm.)
 - Choanal swab (comm.+breeder)
 - Cloacal swab (comm.+breeder)

- Analyses
 - 16S rRNA
 - Shotgun DNA
 - Build Hi-C database
 - RNA-Seq (host plus microbes)
 - E. coli vertical transmission

Poultry Respiratory Disease Coordinated Agricultural Project