Understanding the Respiratory Microbiome of Poultry

John Ngunjiri

THE OHIO STATE UNIVERSITY

Project goals

Progress

- Baseline microbiome
 - **□**Turkeys
 - ✓ Completed → sampling
 - ✓ Ongoing → Sequencing and data analysis
 - □Chicken layers
 - ✓ Completed → commercial flock sampling, 16S sequencing, data analysis
 - ✓ Ongoing → SPF flock sampling
- Virus-microbiome interactions
 - □LPAIV and IBDV in chickens
 - □LPAIV and reovirus in turkeys

Project goals

Commercial chicken layer flock

- ❖Hy-Line W-36 layers
- ❖More than 80,000 chickens
- Sampled a total of 201 birds at different stages of farm sequence

Sampling timeline and flock management

Flock performance

Sample distribution in microbial community space

Comparisons using ANOSIM

	Sinus	Trachea	lleum
Trachea	0.522		
lleum	0.669	0.400	
Cecum	0.877	0.863	0.730

☐ Ileal microbiota is compositionally closer to respiratory microbiota than to cecum.

Taxonomic links between body sites

Core respiratory OTUs

Core gut OTUs

Sub-clinical levels of potential pathogens

- Most of these genera shared between ileum and respiratory sites
- □ Confirmed subclinical levels of:
 - Mycoplasma synoviae, ORT, APEC, Clostridium perfringens

SUMMARY: commercial chicken layers

- Cecal microbiota was drastically altered in the layer stage
- Ileal microbiota are related to the respiratory microbiota, possibly due to aerosolization of fecal bacteria
- Confirmed pathogens emerged and persisted at subclinical levels, in an optimally performing flock
- Inter-system enrichment and spread of pathogens
 □ Gut → respiratory, and vice versa

Project goals

Impact of virus infection on microbiome

In collaboration with Dr. Daral Jackwood

AIV = poultry-adapted CKPA virus

Bursa atrophy, immunosuppression, AIV shedding

Suppression of AIV HI antibody response

Enhancement of AIV replication in trachea

- Bursa atrophy was observed in IBDV and AIV groups
- ☐ Significant reduction of AIV antibodies in IBDV-infected chickens
- ☐ Enhanced AIV replication in trachea of IBDV-infected chickens

Impact of virus on respiratory system

Impact of virus on gut

SUMMARY: virus infection in SPF chicken

Remarkable general suppression of sinus core by virus

- Systemic differences in virus impacts on bacterial diversity
 - ☐ Respiratory → Community dissimilarity (between birds)
 - □ Gut → Species evenness (individual birds)
- Differential effects of IBDV and AIV
 - ☐ Tend to be body site-specific

FUTURE DIRECTIONS

- Controlled microbiome experiments
 - ☐ Inter-system enrichment and spread of pathogens
 - → role of live vaccines and viral infections
 - Long term impacts of virus-induced disruption of bacterial diversity
 - → susceptibility to disease
 - → performance.
- Target respiratory and ileal microbiome to reduce impact of respiratory pathogens
- Incorporate components of viral and fungal microbiome and the host

Acknowledgement

THE OHIO STATE UNIVERSITY

Dr. Chang-Won Lee

Dr. John Ngunjiri

Dr. Daral Jackwood

Kara Taylor

Michael Abundo

Mahesh K.C.

Dr. Hyesun Jang

Dr. Mohamed Elaish

Amir Ghorbani

Dr. Juliette Hanson

Animal welfare personnel

Saranga Wijeratne

University of Minnesota

Dr. Timothy Johnson

Dr. Bonnie Youmans

United States Department of Agriculture National Institute of Food and Agriculture

Grant no. 2015-68004-23131